

First Order Motion Model for Image Animation

Aliaksandr Siarohin¹, Stephane Lathuiliere^{1,4}, Sergey Tulyakov², Elisa Ricci^{1,3} and Nicu Sebe¹

¹DISI, University of Trento; ²Snap Inc, ³Fondazione Bruno Kessler, ⁴LTCI, Institut polytechnique de Paris

IP PARIS Snap Inc.

Self-Supervised Image Animation

- Training time: we learn a self-supervised motion representation, using image reconstruction objective
- Testing time: we extract motion from driving video and appearance from source

Proposed Method

• We assume existence of abstract reference frame. We estimate reference to source $\mathcal{T}_{\mathbf{S}\leftarrow\mathbf{R}}(p)$ and reference to driving $\mathcal{T}_{\mathbf{D}\leftarrow\mathbf{R}}(p)$ motion representation using first order approximation:

$$\mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p) = \mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p_k) + \left(\frac{d}{dp}\mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p)\Big|_{p=p_k}\right)(p-p_k) + o(\|p-p_k\|)$$

• Source $\mathcal{T}_{\mathbf{S}\leftarrow\mathbf{R}}(p)$ and driving $\mathcal{T}_{\mathbf{D}\leftarrow\mathbf{R}}(p)$ motion representations are combined:

$$\mathcal{T}_{\mathbf{S}\leftarrow\mathbf{D}}(z) \approx \mathcal{T}_{\mathbf{S}\leftarrow\mathbf{R}}(p_k) + J_k(z - \mathcal{T}_{\mathbf{D}\leftarrow\mathbf{R}}(p_k)); J_k = \left(\frac{d}{dp}\mathcal{T}_{\mathbf{S}\leftarrow\mathbf{R}}(p)\Big|_{p=p_k}\right) \left(\frac{d}{dp}\mathcal{T}_{\mathbf{D}\leftarrow\mathbf{R}}(p)\Big|_{p=p_k}\right)^{-1}$$

- From $\mathcal{T}_{\mathbf{S}\leftarrow\mathbf{D}}(z)$ optical flow and occlusion mask is predicted
- Representation of the source image is warped and missing parts are inpainted

https://github.com/AliaksandrSiarohin/first-order-model

Our code is publicly available: